цвет - перевод на
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

цвет - перевод на

КАЧЕСТВЕННАЯ СУБЪЕКТИВНАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ОПТИЧЕСКОГО ДИАПАЗОНА
Цвет (зрительное ощущение); Оттенки; Оттенок; Ахроматический цвет; Цветность
  • Диаграмма цветового пространства CIE 1931. На внешней линии, ограничивающей цветовое пространство, указаны длины волн спектральных (монохроматических) цветов, в нм.
  • [[Цветовой круг]]
  • колбочек]]'' — [[рецептор]]ов человеческого зрения.
  • палочек]] — рецепторов сумеречного зрения. Ось длин волн на графике имеет [[логарифмический масштаб]]
  • гамма-коррекции]] 1.5.
  • Закат
  • 328x328px

коричневый         
  • Цветные диски кажутся '''коричневыми''' и '''оранжевыми''', но на самом деле имеют одинаковый оттенок; их воспринимаемый цвет зависит от оттенка '''серого''', которым они окружены.<ref>G. M. Johnson and M. D. Fairchild, "Visual psychophysics and color appearance, " (chapter) in ''CRC Digital Color Imaging Handbook'', 115—171 (2003).</ref>
ЦВЕТ ЖАРЕНОГО КОФЕ, КОРИЦЫ, ТЁМНЫЙ БУРО-ЖЁЛТЫЙ ЦВЕТ
Коричневый; Шоколадный цвет
castanho ; marrom (Bras.)
голубой         
ЦВЕТ ОТТЕНКА СИНЕГО
Голубые; Голубой (цвет); Голубой; Небесно-голубой
azul claro (celeste) ; homossexual
цвет      
(окраска) cor (f) ; florada (f) ; {перен.} {книжн.} (отборная часть) flor (f) ; escol (m) ; (украшение) ornamento (m)

Определение

Цвет
I

Михаил Семенович (14.5.1872, Асти, Италия, - 26.6.1919, Воронеж), русский ботаник-физиолог и биохимик. Окончил Женевский университет (1893). В 1896 получил степень доктора Женевского университета за работу "Исследование физиологии клетки" (опубликована в 1896) и, приехав в Россию, начал изучать хлорофилл в фитофизиологической лаборатории Петербургской АН по предложению А. С. Фаминцына. С 1897 преподавал ботанику на курсах, организованных П. Ф. Лесгафтом при петербургской биологической лаборатории. В 1901 защитил магистерскую диссертацию "Физико-химическое строение хлорофильного зерна"; с 1902 ассистент кафедры физиологии и анатомии растений Варшавского университета, с 1908 преподаватель ботаники Варшавского политехнического института. В 1910 защитил докторскую диссертацию "Хромофиллы в растительном и животном мире", удостоенную академия, премии (1911). С 1917 профессор Юрьевского (ныне Тартуский) университета, с 1918 профессор Воронежского университета. Основные труды по изучению пластид и пигментов растений и разработке методов их исследований. Особое значение имеет созданный Ц. метод разделения веществ, основанный на избирательном поглощении отдельных компонентов анализируемой смеси различными адсорбентами, изложенный им впервые в докладе "О новой категории адсорбционных явлений и о применении их к биохимическому анализу" (1903), а затем развитый в работах 1906-10. Этот метод позволил Ц. доказать неоднородность зелёного и жёлтого пигментов листьев растений и получить в чистом виде хлорофиллины α, β и γ (ныне называемые хлорофиллами a, b и с) и ряд изомеров ксантофилла. Открытие Ц. получило широкое применение и признание с начала 30-х гг. при разделении и идентификации различных пигментов, витаминов, ферментов, гормонов и др. органических и неорганических соединений и послужило основой для создания ряда новых направлений хроматографии (См. Хроматография). Для физиологии растений существенны выводы Ц. о природе хлоропластов, состоянии хлорофилла в растении, механизме фотосинтеза и др.

Соч.: Хроматографический адсорбционный анализ. Избр. работы, М., 1946.

Лит.: Сенченкова Е. М., Михаил Семенович Цвет, М., 1973 (лит.).

Е. М. Сенченкова.

II

одно из свойств объектов материального мира, воспринимаемое как осознанное зрительное ощущение. Тот или иной Ц. "присваивается" человеком объектам в процессе их зрительного восприятия.

В подавляющем большинстве случаев цветовое ощущение возникает в результате воздействия на глаз потоков электромагнитного излучения из диапазона длин волн, в котором это излучение воспринимается глазом (видимый диапазон - длины волн от 380 до 760 нм). Иногда цветовое ощущение возникает без воздействия лучистого потока на глаз - при давлении на глазное яблоко, ударе, электрическом раздражении и др. (см. Фосфен), а также по мысленной ассоциации с др. ощущениями - звука, тепла и т.д., и в результате работы воображения (См. Воображение). Различные цветовые ощущения вызывают разноокрашенные предметы, их разноосвещённые участки, а также Источники света и создаваемое ими освещение. При этом восприятия Ц. могут различаться (даже при одинаковом относительном спектральном составе потоков излучения) в зависимости от того, попадает ли в глаз излучение от источников света или от несамосветящихся объектов. В человеческом языке, однако, используются одни и те же термины для обозначения Ц. этих двух разных типов объектов. Основную долю предметов, вызывающих цветовые ощущения, составляют несамосветящиеся тела, которые лишь отражают или пропускают свет, излучаемый источниками. В общем случае Ц. предмета обусловлен следующими факторами: его окраской и свойствами его поверхности; оптическими свойствами источников света и среды, через которую свет распространяется; свойствами зрительного анализатора (См. Зрительный анализатор) и особенностями ещё недостаточно изученного психофизиологического процесса переработки зрительных впечатлений в мозговых центрах.

Эволюционно способность к восприятию Ц. развилась для целей идентификации предметов вместе со способностями к восприятию других их свойств (размеров, твёрдости, теплоты и др.) и перемещений в пространстве, помогая обнаруживать и опознавать в жизненно важных ситуациях отдельные предметы по их окраске при всевозможных изменениях освещения и состояния окружающей их среды. Эта необходимость распознавания объектов явилась главной причиной того, что их Ц. определяются в основном их окраской, и при привычных для человека условиях наблюдения за счёт вносимой наблюдателем бессознательно поправки на освещение лишь в малой степени зависят от освещения. Например, зелёная листва деревьев признаётся зелёной даже при красноватом освещении на закате солнца. Оговорка о привычных (в широком смысле) условиях наблюдения весьма существенна - если сделать их резко необычными, суждения человека о Ц. предметов (следовательно, и его цветовые ощущения) становятся неуверенными или ошибочными. (Так, описания и попытки воспроизведения Ц. т. н. космических зорь, сделанные разными космонавтами, сильно отличались одно от другого и от Ц. этих "зорь", зафиксированных объективными методами цветной фотографии (См. Цветная фотография).) Вырабатывающееся и закрепляющееся в человеческом сознании устойчивое представление об определённом Ц. как неотъемлемом признаке привычных объектов наблюдения называется "эффектом принадлежности Ц.", или "явлением константности Ц.". Эта психологическая особенность зрительного восприятия наиболее сильно проявляется при рассматривании несамосветящихся предметов и обусловлена тем, что в повседневной жизни мы одновременно рассматриваем совокупности предметов, подсознательно сравнивая их Ц., либо сравниваем цветовые ощущения от разноокрашенных или разноосвещённых участков этих предметов. Эффект принадлежности Ц. несамосветящихся объектов настолько значителен, что даже в неблагоприятных условиях рассматривания Ц. предмета осознаётся в результате опознания предмета по др. признакам. Наименования многих Ц. произошли от название объектов, окраска которых очень сильно выражена: малиновый, розовый, изумрудный. Нередко даже Ц. источника света описывают Ц. какого-либо характерного несветящегося объекта: кроваво-красный диск Солнца. Эффект принадлежности Ц. не столь силён для источников света, поскольку в обычных (не связанных с их производством) условиях их редко сопоставляют с др. источниками, и зрительный анализатор в значительной степени адаптируется к условиям освещения. Примером может служить неопределённость понятия "белый свет", в отличие от полной определённости понятия "белый Ц. поверхности несамосветящегося предмета" (Ц. поверхности, на всех участках которой во всём видимом диапазоне минимально и одинаково по относительной интенсивности Поглощение света).

Восприятие Ц. может частично меняться в зависимости от психофизиологического состояния наблюдателя, например усиливаться в опасных ситуациях, уменьшаться при усталости и т.д. Несмотря на адаптацию глаза к условиям освещения, оно может довольно заметно отличаться от обычного при изменении интенсивности излучения (того же относительного спектрального состава) - явление, открытое немецкими учёными В. Бецольдом и Э. Брюкке в 1870-х гг. Оно наглядно демонстрируется в т. н. бинокулярной колориметрии, основанной на независимой адаптации одного глаза от другого. Всё это указывает на ведущую роль мозговых центров, ответственных за восприятие Ц., и степени их "тренированности" (при неизменном фотохимическом аппарате цветового зрения (См. Цветовое зрение)).

Ц. излучений, длины волн которых располагаются в определённых интервалах из диапазона видимого света вокруг длины волны какого-либо монохроматического излучения, называются спектральными Ц. Излучения с длинами волн от 380 до 470 нм имеют фиолетовый и синий Ц., от 480 до 500 нм - сине-зелёный, от 510 до 560 нм - зелёный, от 570 до 590 нм - жёлто-оранжевый, от 600 до 760 нм - красный (в более мелких участках этих интервалов Ц. излучений соответствуют различным оттенкам указанных Ц., большее количество которых легко различается тренированным наблюдателем).

Развитие способности к ощущению Ц. эволюционно обеспечивалось формированием специальной системы цветового зрения, состоящей из трёх типов цветочувствительных фоторецепторов (См. Фоторецепторы) в центральном участке сетчатки (См. Сетчатка) глаза (т. н. колбочек) с максимумами спектральной чувствительности (См. Спектральная чувствительность) в трех разных спектральных участках: красном, зелёном и синем, а также четвёртого типа рецепторов (палочек), не обладающих преимущественной чувствительностью к какому-либо одному спектральному Ц., расположенных по периферии сетчатки и играющих главную роль в создании ахроматических (см. ниже) зрительных образов. Часто недооцениваемое значение палочек в механизме распознавания Ц. становится тем выше, чем ниже Освещённость наблюдаемых предметов. Воздействие различных по спектральному составу и интенсивности потоков лучистой энергии на эти четыре типа рецепторов сетчатки и является физико-химической основой различных восприятий Ц. Комбинации разных по интенсивности раздражений фоторецепторов, перерабатываемые и в периферийных проводящих нервных путях, и в мозговых зрительных центрах, дают всё многообразие цветовых ощущений. Суммарная спектральная чувствительность глаза, обусловленная действием фоторецепторов всех типов, максимальна в "зелёной" области (длина волны около 555 нм), а при понижении освещённости смещается в "сине-зелёную" область. Предполагавшаяся ранее сводимость всех цветовых ощущений к сочетаниям различных раздражений только трёх типов цветочувствительных элементов послужила основой для разработки способов количественного выражения Ц. в виде набора трёх чисел. Подобный подход имеет рациональную основу (см. ниже), однако при разработке таких способов не могли быть учтены влияние вариаций освещённости и интенсивности излучения, роль (весьма значительная) зрительных мозговых центров и общего психофизиологического состояния наблюдателя.

При уточнённом качественном описании Ц. используют три его субъективных атрибута: цветовой тон (ЦТ), насыщенность и светлоту. Разделение признака Ц. на эти взаимосвязанные компоненты есть результат мысленного процесса, существенно зависящего от навыка и обучения. Наиболее важный атрибут Ц. - ЦТ ("оттенок цвета") - ассоциируется в человеческом сознании с обусловленностью окраски предмета определённым типом пигмента, краски, красителя. Например, зелёный тон присваивают предметам с окраской, близкой к окраске естественной зелени, содержащей Хлорофилл. Насыщенность характеризует степень, уровень, силу выражения ЦТ. Этот атрибут в человеческом сознании связан с количеством (концентрацией) пигмента, краски, красителя. Серые тона называются ахроматическими (бесцветными) и считают, что они не имеют насыщенности и различаются лишь по светлоте. Светлоту сознание обычно связывает с количеством чёрного или белого пигмента, реже - с освещённостью. Светлоту разноокрашенных объектов оценивают, сопоставляя их с ахроматичными объектами. Ахроматичность несамосветящихся объектов обусловлена более или менее равномерным, одинаковым отражением ими излучений всех длин волн в пределах видимого спектра. Ц. ахроматичных поверхностей, отражающих максимум света, называется "белым". Несмотря на то, что по такому определению "белыми" могут оказаться предметы, которые при непосредственном сравнении дают разные цветовые ощущения, среди ахроматических Ц. несамосветящихся объектов белый Ц. занимает исключительное положение. Поверхности с белой окраской часто служат своеобразными "эталонами": они всегда сразу узнаются и именно сопоставление с ними, наряду с адаптацией глаза, позволяет бессознательно вводить поправку на освещение. Даже если наблюдаются только белые предметы, по ним опознаётся Ц. самого освещения. При "узнавании" Ц. объектов в отсутствии "эталонных" белых поверхностей решающую роль играют т. н. цветотеневые соотношения, которые даёт сопоставление объектов, различающихся по светлоте и ЦТ, и ахроматических объектов.

Насыщенность и светлота несамосветящихся предметов взаимосвязаны, т.к. усиление избирательного спектрального поглощения при увеличении количества (концентрации) красителя всегда сопровождается уменьшением интенсивности отражённого света, что вызывает ощущение уменьшения светлоты. Так, роза более насыщенного пурпурного Ц. воспринимается более тёмной, чем роза с тем же, но менее выраженным ЦТ.

Одновременное рассматривание одних и тех же несамосветящихся предметов или источников света несколькими наблюдателями с нормальным цветовым зрением (в одинаковых условиях рассматривания) позволяет установить однозначное соответствие между спектральным составом сравниваемых излучений и вызываемыми ими цветовыми ощущениями. На этом основаны Цветовые измерения (колориметрия). Хотя такое соответствие и однозначно, но не взаимно-однозначно: одинаковые цветовые ощущения могут вызывать потоки излучений различного спектрального состава. Определений Ц., как физической величины, существует много. Но даже в лучших из них с колориметрической точки зрения часто опускается упоминание о том, что указанная (не взаимная) однозначность достигается лишь в стандартизованных условиях наблюдения, освещения и т.д., не учитывается изменение восприятия Ц. при изменении интенсивности излучения того же спектрального состава (явление Бецольда - Брюкке), не принимается во внимание т. н. цветовая адаптация глаза и др. Поэтому многообразие цветовых ощущений, возникающих при реальных условиях освещения, вариациях угловых размеров сравниваемых по Ц. элементов, их фиксации на разных участках сетчатки, разных психофизиологических состояниях наблюдателя и т.д., всегда богаче колориметрического цветового многообразия. Например, в колориметрии одинаково определяются как оранжевые или жёлтые Ц., которые в повседневной жизни воспринимаются (в зависимости от светлоты) как "бурые", "каштановые", "коричневые", "шоколадные", "оливковые" и т.д. В одной из лучших попыток определения Ц., принадлежащей Э. Шредингеру (См. Шрёдингер), трудности задачи "снимаются" простым отсутствием каких-либо указаний на зависимость цветовых ощущений от многочисленных конкретных условий наблюдения. По Шредингеру, Ц. есть свойство спектрального состава излучений, общее всем излучениям, визуально не различимым для человека.

При цветовых измерениях (в колориметрии) Ц. обозначают совокупностью трёх чисел. Существует много систем, отличающихся методикой определения таких трёх чисел. Широко применяется, например, система, в которой численные значения придают описанным выше субъективным атрибутам Ц. Придание им численных значений осуществляют либо компараторным методом (сравнение с эталонами Ц., составляющими цветовые таблицы или атласы), либо инструментально-расчётным методом, в котором ЦТ выражается через объективно определяемую длину волны (длину волны излучения, воспроизводящего - в смеси с белым Ц. - измеряемый Ц.), насыщенность Ц. - через его чистоту (соотношение интенсивностей монохроматического и белого Ц. в смеси), а светлота выражается через также объективно устанавливаемую яркость измеряемого излучения ("гетерохромную", т. е. "разноцветную" яркость), определяемую экспериментально или рассчитываемую по кривой спектральной световой эффективности (См. Спектральная световая эффективность) излучения (его видности, как говорили раньше). Количественное выражение субъективных атрибутов Ц. неоднозначно, поскольку оно сильно зависит от различия между конкретными условиями рассматривания и стандартизованными колориметрическими. В частности, поэтому существует много формул, определяющих светлоту.

В колориметрии особое значение придают измерению спектральных Ц. и определению по ним т. н. кривых сложения, характеризующих спектральную чувствительность зрительного анализатора относительными количествами трёх излучений, смешение которых даёт определённое цветовое ощущение. Ц. излучений разного спектрального состава, которые при одинаковых условиях рассматривания визуально воспринимаются одинаковыми, называются метамерными Ц., или метамерами. Метамерия Ц. увеличивается с уменьшением его насыщенности, т. е. чем менее насыщен Ц., тем большим числом комбинаций смесей излучений разного спектрального состава он может быть получен. Для белых Ц. характерна наибольшая метамерия. Ц. любых двух излучений, создающих в смеси белый Ц., называются дополнительными цветами (См. Дополнительные цвета). Например, дополнительными при получении белого Ц. от источника с цветовой температурой (См. Цветовая температура) 4800 К являются сине-зеленые и красные монохроматические излучения с длинами волн 490 и 595 нм, либо 480 и 580 нм.

Наблюдатель с нормальным цветовым зрением при сопоставлении различно окрашенных предметов или источников света может различать при внимательном рассматривании большое количество Ц. Натренированный наблюдатель различает по ЦТ около 150 Ц., по насыщенности около 25, по светлоте от 64 при высокой освещённости до 20 при пониженной освещённости (разумеется, здесь речь идёт о "тренированности" мозговых зрительных центров, ответственных за цветовые ощущения). При аномалиях цветового зрения различается меньшее число Ц. Около 90\% всех людей обладают нормальным цветовым зрением и около 10\% - частично или полностью "цветнослепые". Характерно, что из этих 10\% людей с аномалиями цветового зрения 95\% - мужчины. Существует три вида таких аномалий: краснослепые (протанопы) не отличают красных Ц. от близких к ним по светлоте ахроматических Ц. и дополнительных по ЦТ тёмно-голубых Ц.; зелёнослепые (дейтеранопы) не отличают или плохо отличают зелёные цвета от близких к ним по светлоте ахроматических Ц. и дополнительных пурпурных Ц.; синеслепые (тританопы) не отличают синих Ц. от близких по светлоте ахроматических и дополнительных темно-жёлтых Ц. Очень редки случаи полной цветовой слепоты, когда воспринимаются лишь ахроматические образы. Аномалии цветового зрения не мешают нормальной трудовой деятельности при условии, что к ряду профессий цветнослепые не должны допускаться.

Одно из основных свойств зрительного анализатора - адаптация зрения - обеспечивает опознание предметов по Ц. (за счёт эффекта принадлежности Ц.) при вариациях условий освещения и рассматривания в весьма широких пределах. Вместе с тем при изменении спектрального состава освещения визуально воспринимаемые различия между одними Ц. усиливаются, а между другими ослабевают. Например, при желтоватом освещении, создаваемом лампами накаливания (См. Лампа накаливания), синие и зелёные ЦТ различаются хуже, чем красные и оранжевые, а при синеватом освещении в пасмурную погоду, наоборот, хуже различаются красные и оранжевые ЦТ. При слабом освещении все Ц. различаются хуже и воспринимаются менее насыщенными ("эффект сумеречного зрения"). При очень сильном освещении Ц. воспринимаются тоже менее насыщенными и "разбелёнными". Эти особенности зрительного восприятия широко используются в изобразительном искусстве для создания иллюзии того или иного освещения.

Цвет в индивидуальной и общественной практике человека. Исключительно велика роль Ц. в жизни и деятельности каждого отдельного человека и общества в целом: в промышленности, транспорте, искусстве, современной технике передачи информации и т.д. В быту и на производстве Ц. и их сочетания интенсивно используются как символы, заменяющие целые понятия в правилах поведения. Так, сигнальные огни того или иного Ц. на транспортных магистралях разрешают или запрещают движение, предупреждают, требуют внимания. В промышленности и др. коллективной деятельности Ц. как символы применяются для маркировки трубопроводов с различными веществами или температурами, различных электропроводов, всевозможных жетонов, информационных карт, банковских документов, денежных знаков, спецодежды и др. В промышленности и быту Ц. является одним из основных факторов производственного и бытового комфорта. Изучение психологического воздействия определённых сочетаний Ц. - цветовых гармоний - составляет предмет эстетики Ц. Цветовые гармонии широко используются как в искусстве, так и при организации производственных процессов для создания психологических акцентов, обеспечивающих увеличение производительности труда и уменьшение утомляемости работников, а также бытовой комфорт, способствующий активному и наиболее полноценному отдыху. Особо важное значение Ц. имеет для повышения качества и стандартности промышленной продукции. Как показатель высокого качества продуктов Ц. незаменим в случаях, когда др. объективные или субъективные методы по тем или иным причинам нельзя применить либо когда их применение требует длительной и трудоёмкой работы или дорогостоящей аппаратуры. Поэтому широкое распространение получили компараторные методы идентификации Ц. многих пищевых продуктов и веществ, используемых в химической, лёгкой и пищевой промышленности, а также в др. областях народного хозяйства. Для практического применения этих методов выпускаются различные цветные таблицы, атласы, образцы красок, компараторы, колориметры, цветные фотометры и денситометры.

Лит.: Артюшин Л. Ф., Основы воспроизведения цвета в фотографии, кино и полиграфии, М., 1970; Гуревич М. М., Цвет и его измерение, М. - Л., 1950; Кустарёв А. К., Колориметрия цветного телевидения, М., 1967; Ивенс Р. М., Введение в теорию цвета, пер. с англ., М., 1964: Wyszecki G., Stiles W. S., Color science, N. Y. - L. - Sydney, 1967.

Л. Ф. Артюшин.

III

в искусстве, художественное выражение человеком его способности к восприятию действительности во всём богатстве красок. Ц. выступает в связи с такими элементами художественной формы, как Композиция, пространство, Фактура, Колорит, пронизывая всю сферу материального воплощения произведений искусства (см. Полихромия). Ц. может характеризовать степень отдалённости объекта в картинном пространстве (цветовая перспектива), его связь с др. объектами и окружающей средой (см. Синтез искусств), материальные свойства отдельного объекта или его частей, общий эмоциональный строй художественного образа. Ц. может образовывать условные системы, имеющие символическое значение (особенно на ранних ступенях развития культуры или в средневековье, см., например, Иконопись). В отдельные эпохи в развитии мирового искусства складываются свои, характерные для этой эпохи, представления об использовании Ц., связанные с понятиями стиля, направления, творческого метода.

Лит.: Маца И. Л., Проблема цвета в искусстве, "Искусство", 1933, № 1-2; Regel G., Grundfragen des farbigen Gestaltens, B., 1961.

В. С. Турчин.

Википедия

Цвет

Цвет — качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов. Восприятие цвета (цветоощущение) определяется индивидуальностью человека, а также спектральным составом, цветовым и яркостным контрастом с окружающими источниками света, а также несветящимися объектами. Очень важны такие явления, как метамерия, индивидуальные наследственные особенности человеческого глаза (степень экспрессии полиморфных зрительных пигментов) и психики.

Говоря простым языком, цвет — это ощущение, которое получает человек при попадании ему в глаз световых лучей. Поток света с одним и тем же спектральным составом вызовет разные ощущения у разных людей в силу того, что у них различаются характеристики восприятия глаза, и для каждого из них цвет будет разным. Отсюда следует, что споры, «какой цвет на самом деле», бессмысленны — смысл имеет только измерение того, каков «на самом деле» состав излучения.

Примеры употребления для цвет
1. Зеленый цвет надежды, цвет оливкового листа, но...
2. Краповый цвет - исторический цвет погон внутренних войск.
3. ЦВЕТ ЗДОРОВЬЯ Цвет моих зубов немного желтоватый.
4. Зелёный цвет - это цвет надежды, весны и возрождения, цвет лесов и полей.
5. -- Красный цвет воспринимается как цвет лидера, это очень сильный, агрессивный цвет.